Exercise 28

Find
$$f'(x)$$
 and $f''(x)$.

$$f(x) = \sqrt{x}e^x$$

Solution

Use the product rule to differentiate f(x).

$$f'(x) = \frac{d}{dx} \left(x^{1/2} e^x \right)$$

$$= \left[\frac{d}{dx} (x^{1/2}) \right] (e^x) + (x^{1/2}) \left[\frac{d}{dx} (e^x) \right]$$

$$= \left(\frac{1}{2} x^{-1/2} \right) (e^x) + (x^{1/2}) (e^x)$$

$$= \left(\frac{1}{2} x^{-1/2} + x^{1/2} \right) e^x$$

Use the product rule again to differentiate f'(x).

$$f''(x) = \frac{d}{dx} \left[\left(\frac{1}{2} x^{-1/2} + x^{1/2} \right) e^x \right]$$

$$= \left[\frac{d}{dx} \left(\frac{1}{2} x^{-1/2} + x^{1/2} \right) \right] (e^x) + \left(\frac{1}{2} x^{-1/2} + x^{1/2} \right) \left[\frac{d}{dx} (e^x) \right]$$

$$= \left(-\frac{1}{4} x^{-3/2} + \frac{1}{2} x^{-1/2} \right) e^x + \left(\frac{1}{2} x^{-1/2} + x^{1/2} \right) (e^x)$$

$$= \left(-\frac{1}{4} x^{-3/2} + x^{-1/2} + x^{1/2} \right) e^x$$